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• Given an experimental hazard data, we are frequently 
concerned with estimating a level of exposure, that 
corresponds to level of risk for the hazard  of interest.

• This value, called the benchmark dose, is estimated 
based upon a chosen regression model. 

• Multiple models are frequently available and often 
describe the data “equally.”

• Even though these models describe the data similarly 
the models often characterize the risk at low levels of 
exposure differently. 

• Yet decisions are made with one model in mind.
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• Consider the problem of estimating a benchmark dose 
(BMD) from dichotomous dose response data. 

• Here we seek to estimate the BMD from a “plausible”
model, given experimental data. 

• In these experiments: 
– Animals are exposed to some potential hazard. 
– The adverse response is assumed to be distributed 

binomially.
– Risk (i.e, probability of adverse response) is 

estimated using regression modeling.
– Multiple dose-response models can be used to 

estimate risk.
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log-probit (6)

quantal-linear (7)

quantal-quadratic                         (8)

Weibull (9)

where Γ(α)= gamma function evaluated at α, for Ф(x) =
CDF N(0,1) and πi = γ when di=0 for models (2) and (7).
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• Given data (in absence of mechanistic 
information),  a typical analyst will:
– Estimate the regression coefficients for 

models (1)-(9).
– Estimate the BMD/BMDL given the model. 
– Pick the “best model.”

• As uncertainty results from one given 
model, a different approach may be 
helpful.
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• A better way would be to find an adequate way 
to combine all estimates, and thus 
describe/account for model uncertainty. 

• Model Averaging (MA) is a method that may 
satisfactorily account for model uncertainty. 

• Instead of focusing on a single model it allows 
researchers to focus on “plausible behavior.”
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• Given the fits of models (1)-(9) MA:
– Calculates the dose-response based upon a weighted 

average of dose-responses Raftery et al. (1997), 
Buckland et al. (1997)

– Estimates the MA dose-response curve as:

– Weights are formed as:

– Where Ii=AIC, Ii=KIC , or  Ii=BIC. Other weights are 
possible.
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• Given this “Average-model,” the benchmark 
dose is then computed by finding the dose that 
satisfies the equation                            

BMR = [πMA(d)i- π MA(0)]/[1- π MA(0)].

• BMR typically set at values of 1, 5, and 10%.
• The BMDL is computed through a parametric 

bootstrap. Here the 5th percentile of the 
bootstrap distribution is used to compute the 
95% lower tailed confidence limit estimate on the 
BMD.
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• MA seems like a good idea, however we need to 
know if it works well in practice. 

• A simulation study was conducted investigating 
the behavior of MA.

• 54 true model conditions, using models (1) – (9), 
were used in the simulation. 

• Full study described in Wheeler and Bailer (Risk 
Analysis, In Press)
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• The simulation proceeded by generating hypothetical 
toxicology experiments with response probability π(d). 

• With π(d) specified by one of the 54 true dose-response 
curves. 

• These experiments consisted of 4 dose group design 
with doses of 0, 0.25, 0.50, and 1.0. 

• n=50 for all dose groups.
• 2000 experiments were generated per true dose-

response curve. 
• Bias as well as coverage [i.e., Pr(BMDL ≤ BMDtrue)] was 

estimated. 
• Coverage is reported here.
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• In each experiment the “average-model” BMD as well as the BMDL 
was estimated. 

• BMRs of 1% and 10% were used to estimate the BMD.
• Two model spaces for averaging were considered. 

– One space consisted of three flexible models: the multistage, 
Weibull and the log-probit model.

– The second space had seven models that added the probit, 
logistic, quantal-linear, and quantal-quadratic to the three model 
space. 

• Coverage probability [i.e., Pr(BMDL ≤ BMDtrue)] was estimated 
across 2000 simulations.

• The nominal coverage level was 95%. 
• The simulation took approximately 1 CPU year of computation.
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• Nominal coverage is reached for most 
simulation conditions. 

• MA fails to reach nominal coverage in the 
quantal-linear and similar cases. 

• It is important to understand why the BMD 
is mischaracterized in the quantal linear 
case. 

• We study this through investigating the 
sampling distribution.

Characterizing dose-response model 
uncertainty using model averaging.

Simulation



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Dose

O
bs

er
ve

d 
In

ci
de

nc
e

Sampling distribution for the quantal-linear model



0.0 0.2 0.4 0.6 0.8 1.0

Dose

0.
00

0.
05

0.
10

0.
15

E
xc

es
s 

R
is

k

Quantal Linear Truth

Weibull

Log-Probit

Multistage

Average fit for 3-model MA models



6/5/2007 21

• The flexibility of the models combined with 
the sampling distribution introduces bias 
into the estimation of the dose-response 
curve. 

• The bias carries through in BMD 
estimation. 

• This also may be the cause of the 
conservative behavior (i.e. coverage > 
99%) seen in the quantal-quadratic case.
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• Improved coverage can be obtained using 
BCa intervals.

• Other results suggest that MA is superior 
to picking the best model.

• The results show MA is not a panacea, it 
is however a step in the right direction.
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• The results are promising but 
implementation of this approach is difficult. 

• The simulation code has been repackaged 
to allow users to implement dichotomous 
dose-response model averaging.

• This is done in a simple MS Windows 
command prompt program. 
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• As mentioned before model averaging is not a 
panacea.  

• As such it does not: 
– Relieve scientists from using their expert judgment. 
– Give automatic license to produce a low dose 

extrapolations. 
– Remove the need for adequate individual model fit 

diagnostics. 
– Remove all model uncertainty from the analysis.

Characterizing dose-response model 
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• It does: 
– Reframe the debate of model choice. 
– Produces relatively stable central estimates 

often independent of a given model being 
included in the average.

– Point direction to future research.
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• Future research:
– Continuous and count data MA software  

development.
– Extensive Study of a proper suite of models to 

use in MA.
– Study of experimental designs that might 

optimize MA performance in terms of 
estimation and lower bound calculation. 
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Thank You


